微生物组基础知识

含细菌的肠绒毛

微生物组是指特定区域内微生物(微生物群)、其基因及其微环境(生活环境)的完整集合。细菌约占微生物组的 98%。1、2

微生物组的子集包括病毒组(病毒)、真菌组(真菌)和古生菌组(古生菌;这些微生物类似于细菌,但属于完全不同的域)。3微生物组是一个存在复杂相互作用和相互关联代谢作用的动态环境。4

病毒组包括会感染微生物组内细菌(噬菌体)以及环境中宿主细胞的病毒。5、6噬菌体占病毒组的大多数。5、6到目前为止,对病毒组的研究较为有限6、7,但是在患有慢性肠病或急性腹泻的犬体内,已确定了粪便病毒组的变化。5、6同样,目前已发表的关于宠物真菌组的研究也较为有限。8

""

肠道微生物组的基因数量远远超过宿主的基因数量。据估计,人体内微生物基因数量是人体基因数量的 100 倍以上。9

对幼猫肠道微生物组进行的宏基因组分析显示,发现的独特基因数量大约是猫基因组中已发现的开放阅读框数量的 108 倍。10

肠道微生物组中占比最多的菌门是厚壁菌门、拟杆菌门、梭杆菌门,其次是变形菌门和放线菌门。11

""

变形菌门是肠道微生物组中最多样化的菌门,包括许多已知的机会性致病菌(如 大肠杆菌、克雷伯氏菌、沙门氏菌和弯曲杆菌)以及在肠道内稳态中发挥重要作用的细菌。12猫粪便微生物组可能比犬粪便微生物组更为多样化。12

探索Microbiome Forum的其他部分

""

以微生物组为中心的宠物健康状况干预

""

Nestlé 和 Purina 在微生物组领域的领先地位

了解更多信息

  1. Barko, P.C., McMichael, M.A., Swanson, K.S., Williams, D.A. (2018). The gastrointestinal microbiome: a review. Journal of Veterinary Internal Medicine, 32, 9–25. doi: 10.1111/jvim.14875
  2. Marchesi, J. R. & Ravel, J. (2015). The vocabulary of microbiome research: a proposal. Microbiome, 3, 31. doi: 10.1186/s40168-015-0095-5
  3. Kim, J. Y., Whon, T. W., Lim, M. Y., Kim, Y. B., Kim, N., Kwo, M.-S.,…Na, Y.-D. (2020). The human gut archaeome: identification of diverse haloarchaea in Korean subjects. Microbiome, 8, 114. doi: 10.1186/s40168-020-00894-x
  4. Seth, E. C., & Taga, M. E. (2014). Nutrient cross-feeding in the microbial world. Frontiers in Microbiology, 5, 350. doi: 10.3389/fmicb.2014.00350
  5. Moreno, P. S., Wagner, J., Mansfield, C. S., Stevens, M., Gilkerson, J. R., & Kirkwood, C. D. (2017). Characterization of the canine faecal virome in healthy dogs and dogs with acute diarrhoea using shotgun metagenomics. PLoS ONE, 12(6), e0178433. doi: 10.1371/journal.pone.0178433
  6. Moreno, P. S., Wagner, J., Kirkwood, C. D., Gilkerson, J. R., & Mansfield, C. S. (2018). Characterization of the fecal virome in dogs with chronic enteropathy. Veterinary Microbiology, 221, 38–43. doi: 10.1016/j.vetmic.2018.05.020
  7. Zhang, W., Li, L., Deng, X., Kapusinszky, B., Pesavento, P. A., Delwart, E. (2014). Faecal virome of cats in an animal shelter. Journal of General Virology, 95, 2553–2564. doi: 10.1099/vir.0.069674-0
  8. Foster, M. L., Dowd, S. E., Stephenson, C., Steiner, J. M., & Suchodolski, J. S. (2013). Characterization of the fungal microbiome (mycobiome) in fecal samples from dogs. Veterinary Medicine International, 2013, 658373. doi: 10.1155/2013/658373
  9. Richards, P., Thornberry, N. A., & Pinto, S. (2021). The gut-brain axis: Identification of new therapeutic approaches for Type 2 diabetes, obesity, and related disorders. Molecular Metabolism, E pub ahead of print. doi: 10.1016/j.molmet.2021.101175
  10. Deusch, O., O’Flynn, C., Colyer, A., Morris, P., Allaway, D., Jones, P. G., & Swanson, K. S. (2014). Deep Illumina-based shotgun sequencing reveals dietary effects on the structure and function of the fecal microbiome of growing kittens. PLoS ONE, 9(7), e101021. doi: 10.1371/ journal.pone.0101021
  11. Suchodolski, J. S. (2011). The intestinal microbiota of dogs and cats: A bigger world than we thought. Veterinary Clinics of North America Small Animal Practice, 41, 261–272. doi: 10.1016/j.cvsm.2010.12.006
  12. Belas, A., Marques, C., & Pomba, C. (2020).The gut microbiome and antimicrobial resistance in companion animals. In Duarte, A. & Lopes da Costa, L. (Eds.), Advances in Animal Health, Medicine and Production (1st ed.), pp. 233–245. Springer International Publishing