营养和心脏健康

营养和心脏健康
有益心脏健康的营养物质图

最佳的心脏健康状况取决于宠物的总体健康状况。让犬和猫保持理想的身体状态,是保证他们幸福的根本。在每次兽医检查时纳入营养评估可以帮助宠物主人实现宠物的健康目标。

对于心脏健康而言,营养可以在支持心脏功能方面发挥关键作用。 

阅读更多信息,了解特定营养物质如何对心脏健康产生积极的影响。

脂肪酸图
改编自 2010 年和 2017 年 Lopaschuk 等人的著作

脂肪酸

这些营养物质是线粒体用于为心脏生产能量的主要底物,其形式为三磷酸腺苷 (ATP)。


但是,线粒体也具有代谢灵活性 – 它们可以使用不同的底物来适应营养物质的供应、不断变化的心脏负荷或代谢状况的改变。其他能量来源包括葡萄糖、酮和支链氨基酸 (BCAA)。1–3  

中链甘油三酯

中链甘油三酯 (MCT)

MCT 是中链脂肪酸 (MCFA) 的来源。MCFA 的碳链较短, 不需要转运蛋白就能进入线粒体。由于代谢步骤较少,MCFA 可以更迅速地被氧化为能量。4  

研究还表明,MCT 可以减少线粒体和细胞质活性氧,这类活性氧对心脏病进展有促进作用。5–8  

Omega 3 脂肪酸

Omega-3 脂肪酸

研究表明,长链 Omega-3 脂肪酸,特别是二十碳五烯酸 (EPA) 对心脏有诸多益处:它们有助于减少炎症介质和氧化应激、稳定犬的心律失常、降低血压以及减少心脏病中的心脏重构。9–17

在充血性心力衰竭患犬中,心源性恶病质很常见,而去脂体重减轻与存活时间显著缩短有关。18-19 炎症似乎是恶病质的病因或促成因素。 因此,Omega-3 的另一个益处是减少了炎症对去脂体重的不利影响。20–22

氨基酸

氨基酸:牛磺酸、赖氨酸和蛋氨酸

牛磺酸是心脏组织中最丰富的氨基酸。虽然其确切作用尚不清楚,但研究表明,牛磺酸对于维持心肌收缩功能和体内稳态非常重要。23–25 对猫而言,牛磺酸是一种必需氨基酸,但是,犬和猫缺乏牛磺酸都会导致心肌衰竭。26  

赖氨酸和蛋氨酸是用于合成肉碱的氨基酸前体,肉碱是一种肽,可帮助将长链脂肪酸转运到线粒体中,用于 ATP 生产。27 

维生素 E

维生素 E

活性氧(ROS) 是细胞代谢的产物。但是,如果 ROS 积累,则氧化应激增加,从而导致细胞膜损伤、DNA 损伤和蛋白质变性。过量 ROS 还会触发一系列导致心脏病的分子事件。维生素 E 是一种细胞抗氧化剂,可清除 ROS 并防止氧化应激造成的损害。

在线粒体功能障碍的情况下(这会导致心力衰竭),ROS 水平增加,从而增加了对抗氧化剂的需求。28–32 

镁

镁在维持健康心脏功能方面具有多种作用,包括抗心律失常和抗氧化作用。镁还有助于在心机细胞中转运 ATP。人体含镁水平不足与心力衰竭和心血管疾病风险增加有关。33-36

Purina 的研究

Purina 研究

Purina 的研究显示了营养物质如何对衰老的心脏产生积极影响。

衰老的心脏不能像年轻的心脏一样适应疾病或环境变化。研究表明,某种分子级联(称为 Wnt/beta-catenin 信号通路)的增加是加速衰老的诸多相关变化之一。37-39

衰老的心脏图

Purina 的科学家收集了公开资料中衰老心脏的基因表达数据。40, 41

这种计算方法揭示了在衰老的心脏中,  Wnt    信号通路的四种基因的表达下降。  

但是,通过限制热量或补充抗氧化剂白藜芦醇的对饮食进行干预,可使基因表达恢复到年轻心脏的水平。42-43

这项研究显示了营养物质如何在分子层面对心脏衰老产生积极影响,从而推动相关研究,以探索用特定营养物质支持或改善心脏功能的方式。 

记忆要点

  • 许多营养物质被认为对心脏健康有益。
  • 脂肪酸是心肌线粒体生产 ATP 的主要来源。
  • Purina 的计算研究显示了营养物质如何对心脏的衰老产生积极影响。

探索改善心脏健康的领域:

了解更多信息

  1. Doenst, T., Nguyen, T. D., & Abel, E. D. (2013). Cardiac metabolism in heart failure: implications beyond ATP production. Circulation Research113(6), 709–724.
  2. Lopaschuk, G.D., Ussher, J.R., Folmes, C.D., Jaswal, J.S., & Stanley, W.C. (2010). Myocardial fatty acid metabolism in health and disease. Physiological Reviews90(1), 207–258.
  3. Lopaschuk, G. (2017). Metabolic Modulators in Heart Disease: Past, Present, and Future. Canadian Journal of Cardiology, 33, 838–849.
  4. Labarthe, F., Gélinas, R., & Des Rosiers, C. (2008). Medium-chain fatty acids as metabolic therapy in cardiac disease. Cardiovascular Drugs and Therapy, 22(2), 97–106.
  5. Bach, A.C., & Babayan, V.K. (1982). Medium-chain triglycerides: an update. American Journal of Clinical Nutrition, 36(5), 950–962.
  6. Finck, B. N., Han, X., Courtois, M., Aimond, F., Nerbonne, J. M., Kovacs, A., Gross, R. W., & Kelly, D. P. (2003). A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proceedings of the National Academy of Sciences of the United States of America100(3), 1226–1231.
  7. Labarthe, F., Khairallah, M., Bouchard, B., Stanley, W.C., & Des Rosiers, C. (2005). Fatty acid oxidation and its impact on response of spontaneously hypertensive rat hearts to an adrenergic stress: benefits of a medium-chain fatty acidAmerican Journal of Physiology-Heart and Circulatory Physiology, 288(3), H1425–36.
  8. Saifudeen, I., Subhadra, L., Konnottil, R., & Nair, R. R. (2017). Metabolic Modulation by Medium-Chain Triglycerides Reduces Oxidative Stress and Ameliorates CD36-Mediated Cardiac Remodeling in Spontaneously Hypertensive Rat in the Initial and Established Stages of Hypertrophy. Journal of Cardiac Failure23(3), 240–251.
  9. Bauer, J.E. (2006). Metabolic basis for the essential nature of fatty acids and the unique dietary fatty acid requirements of cats. Journal of the American Veterinary Medical Association, 229(11), 1729–1732.
  10. Billman, G.E., Kang, J.X., & Leaf, A. (1999). Prevention of sudden cardiac death by dietary pure omega-3 polyunsaturated fatty acids in dogs. Circulation,99(18), 2452–2457.
  11. Freeman, L.M., Rush, J.E., Kehayias, J.J., Ross, J.N. Jr, Meydani, S.N., Brown, D.J., … Roubenoff, R. (1998). Nutritional alterations and the effect of fish oil supplementation in dogs with heart failure. Journal of Veterinary Internal Medicine, 12(6), 440–448.
  12. Freeman, L.M. (2010). Beneficial effects of omega-3 fatty acids in cardiovascular disease. Journal of Small Animal Practice, 51(9), 462–470.
  13. Laurent, G., Moe, G., Hu, X., Holub, B., Leong-Poi, H., Trogadis, J., Connelly, K., Courtman, D., Strauss, B. H., & Dorian, P. (2008). Long chain n-3 polyunsaturated fatty acids reduce atrial vulnerability in a novel canine pacing model. Cardiovascular Research77(1), 89–97.
  14. London, B., Albert, C., Anderson, M. E., Giles, W. R., Van Wagoner, D. R., Balk, E., … Lathrop, D. A. (2007). Omega-3 fatty acids and cardiac arrhythmias: prior studies and recommendations for future research: a report from the National Heart, Lung, and Blood Institute and Office Of Dietary Supplements Omega-3 Fatty Acids and their Role in Cardiac Arrhythmogenesis Workshop. Circulation116(10), e320–e335.
  15. Smith, C.E., Freeman, L.M., Rush, J.E., Cunningham, S.M., & Biourge, V. (2007). Omega-3 fatty acids in Boxer dogs with arrhythmogenic right ventricular cardiomyopathy. Journal of Veterinary Internal Medicine, 21(2), 265–273.
  16. Wall, R., Ross, R. P., Fitzgerald, G. F., & Stanton, C. (2010). Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutrition Reviews68(5), 280–289.
  17. Hansen, R. A., Ogilvie, G. K., Davenport, D. J., Gross, K. L., Walton, J. A., Richardson, K. L., Mallinckrodt, C. H., Hand, M. S., & Fettman, M. J. (1998). Duration of effects of dietary fish oil supplementation on serum eicosapentaenoic acid and docosahexaenoic acid concentrations in dogs. American Journal of Veterinary Research59(7), 864–868.
  18. Ineson, D. L., Freeman, L. M., & Rush, J. E. (2019). Clinical and laboratory findings and survival time associated with cardiac cachexia in dogs with congestive heart failure. Journal of Veterinary Internal Medicine33(5), 1902–1908.
  19. Freeman, L.M. (2012). Cachexia and sarcopenia: emerging syndromes of importance in dogs and cats. Journal of Veterinary Internal Medicine, 26(1), 3–17.
  20. Dupont, J., Dedeyne, L., Dalle, S., Koppo, K., & Gielen, E. (2019). The role of omega-3 in the prevention and treatment of sarcopenia. Aging Clinical and Experimental Research31(6), 825–836.
  21. Gorjao, R., Dos Santos, C., Serdan, T., Diniz, V., Alba-Loureiro, T. C., Cury-Boaventura, M. F., Hatanaka, E., Levada-Pires, A. C., Sato, F. T., Pithon-Curi, T. C., Fernandes, L. C., Curi, R., & Hirabara, S. M. (2019). New insights on the regulation of cancer cachexia by N-3 polyunsaturated fatty acids. Pharmacology & Therapeutics196, 117–134.
  22. Robinson, S. M., Reginster, J. Y., Rizzoli, R., Shaw, S. C., Kanis, J. A., Bautmans, I., … Cooper, C., & ESCEO working group (2018). Does nutrition play a role in the prevention and management of sarcopenia? Clinical Nutrition (Edinburgh, Scotland)37(4), 1121–1132.
  23. Sanderson S. L. (2006). Taurine and carnitine in canine cardiomyopathy. The Veterinary Clinics of North America. Small Animal Practice36(6), 1325–viii.
  24. Schaffer, S., Solodushko, V., & Azuma, J. (2000). Taurine-deficient cardiomyopathy: role of phospholipids, calcium and osmotic stress. Advances in Experimental Medicine and Biology, 483, 57–69.
  25. Schaffer, S. W., Jong, C. J., Ramila, K. C., & Azuma, J. (2010). Physiological roles of taurine in heart and muscle. Journal of biomedical science17, Suppl 1(Suppl 1), S2.
  26. Pion, P.D., Kittleson, M.D., Rogers, Q.R., & Morris, J.G. (1987). Myocardial Failure in Cats Associated with Low Plasma Taurine: A Reversible Cardiomyopathy. Science, 237, 764–768.
  27. Wang, Z., Liu, Y., Liu, G., Lu, H., Mao, C. (2018). L-Carnitine and heart disease. Life Sciences, 184, 88-97.
  28. Birringer, M., & Lorkowski, S. (2019). Vitamin E: regulatory role of metabolites. International Union of Biochemistry and Molecular Biology, Life, 71(4), 479–486.
  29. Michałek, M., Tabiś, A., Cepiel, A., & Noszczyk-Nowak, A. (2020). Antioxidative enzyme activity and total antioxidant capacity in serum of dogs with degenerative mitral valve disease. Canadian Journal of Veterinary Research, 84(1), 67–73.
  30. Pryor, W. A. (2000). Vitamin E and heart disease: basic science to clinical intervention trials. Free radical biology & medicine28(1), 141–164.
  31. Sagols, E., & Priymenko, N. (2011). Oxidative stress in dog with heart failure: the role of dietary fatty acids and antioxidants. Veterinary Medicine International2011, 180–206.
  32. Sozen, E., Demirel, T., & Ozer, N.K. (2019). Vitamin E: regulatory role in the cardiovascular system. International Union of Biochemistry and Molecular Biology Life, 71(4), 507–515.
  33. Del Gobbo, L.C., Imamura, F., Wu, J.H., de Oliveira Otto, M.C., Chiuve, S.E., & Mozaffarian, D. (2013). Circulating and dietary magnesium and risk of cardiovascular disease: a systematic review and meta-analysis of prospective studies. American Journal of Clinical Nutrition98(1), 160–173.
  34. Freeman, L.M., Rush, J.E., & Markwell, P.J. (2006). Effects of dietary modification in dogs with early chronic valvular disease. Journal of Veterinary Internal Medicine, 20, 1116–1126.
  35. Qu, X., Jin, F., Hao, Y., Li, H., Tang, T., Wang, H., Yan, W., & Dai, K. (2013). Magnesium and the risk of cardiovascular events: a meta-analysis of prospective cohort studies. PloS one8(3), e57720.
  36. Tardy, A.L., Pouteau, E., Marquez, D., Yilmaz, C., & Scholey, A. (2020). Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients, 12(1). pii: E228.
  37. Brack, A. S., Conboy, M. J., Roy, S., Lee, M., Kuo, C. J., Keller, C., & Rando, T. A. (2007). Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science (New York, N.Y.)317(5839), 807–810.
  38. Liu, H., Fergusson, M. M., Castilho, R. M., Liu, J., Cao, L., Chen, J., … Finkel, T. (2007). Augmented Wnt signaling in a mammalian model of accelerated aging. Science (New York, N.Y.)317(5839), 803–806.
  39. Marchand, A., Atassi, F., Gaaya, A., Leprince, P., Le Feuvre, C., Soubrier, F., Lompré, A. M., & Nadaud, S. (2011). The Wnt/beta-catenin pathway is activated during advanced arterial aging in humans. Aging Cell10(2), 220–232.
  40. Li, Q., & Hannah, S. S. (2012). Wnt/β-catenin signaling is downregulated but restored by nutrition interventions in the aged heart in mice. Archives of Gerontology and Geriatrics55(3), 749–754.
  41. Barger, J. L., Kayo, T., Vann, J. M., Arias, E. B., Wang, J., Hacker, T. A., Wang, Y., Raederstorff, D., … Prolla, T. A. (2008). A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PloS one3(6), e2264.