益生元

屎肠球菌 SF68

益生菌

肠道微生物群提供对抗病原体的屏障

肠道是数百种不同的细菌和其他微生物(如原生动物、病毒和真菌)的家园。


其中许多细菌是有益的,但有些可能是致病的。统称为微生物群。生活在肠道中的微生物数量以万亿计——肠道中的微生物细胞数量与整个身体中的细胞数量相当。1


这些常驻微生物(或共生细菌)可在能量调节、矿物质吸收、维生素合成、肠道屏障功能和免疫系统功能方面发挥作用。它们还能提供抵抗病原体的屏障,并帮助滋养肠道。

益生菌-猫

益生菌是有助于维持肠道细菌最佳平衡的活体微生物。维持肠道细菌种群的多样性和平衡对健康至关重要。微生物群失衡可能会导致粪便质量较差和免疫系统功能受损。肠道微生物群的组成在很大程度上受饮食的影响,但各种各样的因素均可能改变有益物种和致病物种之间的平衡,并对宠物健康产生不利影响。

益生菌就是营养干预的一个例子,它可以通过各种机制帮助将微生物群向更有益的菌种转变。2

益生菌梭菌

梭菌

微生物组和健康

微生物群落与健康

肠道的微生物定植首先受到母体微生物组、环境和营养的影响。随着年龄、疾病、医疗和其他应激源的增加,肠道中细菌的平衡会向较大的潜在致病菌种群转移。营养干预提供了使这种平衡正常化的机会。3–5

益生菌特征

近年来,益生菌已成为一种安全、新颖的维持健康肠道微生物群、从而促进宠物健康的方式。益生菌的技术性定义为:“当给予足够的量时能够为宿主带来健康益处的活体微生物。” 一些益生菌有助于增强免疫反应,而另一些则刺激抗炎物质的产生。益生菌可用于应对腹泻和其他胃肠道问题,并已在牙齿健康等不同领域显示出前景。6

有效的益生菌应具备以下特征:

  • 食用前保持活性和活力
  • 抗胃酸或肠酶消化
  • 减少或防止致病菌在肠道的粘附
  • 产生不利于病原体生长的产物
  • 促进正常和平衡的微生物组形成
  • 安全(例如,不获取或传播抗生素耐药性,也不产生任何有害代谢产物)
  • 改善宠物的整体健康状况。
普里纳益生菌肠球菌研究所

益生菌背后的科学

益生菌的益处在很大程度上取决于能够在胃肠道短暂定植的活菌数量。益生菌通过竞争性排斥病原体来实现这一点,这可以通过以下几种方式来实现:

  • 益生菌与病原体竞争养分和空间,因为它们充当物理屏障,防止病原体附着在肠道表面
  • 部分益生菌可分泌细菌素和过氧化物等抗菌物质
  • 益生菌通过益生元物质的发酵,产生丁酸、乳酸和乙酸等短链脂肪酸 (SCFA),滋养肠道细胞
  • 这些 SCFA 还降低了肠道 pH 值,从而抑制了致病菌的生长,因为一般来说,病原体更喜欢碱性环境,而有益菌则更喜欢酸性 pH 值。

Purina 的研究

普里纳益生菌研究所

几种益生菌可用于宠物,但很少被证明是有效的。除了符合有效益生菌的所有标准外,还必须进行稳定性研究,以确定该益生菌(活微生物)在典型的生产、运输和储存条件下仍能存活。Purina 已在该领域进行了广泛的研究,并在这些研究的基础上开发了有效且安全的益生菌。

普里纳益生菌研究所

益生菌具有极强的菌株特异性,同一物种的不同菌株可能具有非常不同的作用。益生菌也具有剂量依赖性,因此需要进行临床研究,以确定特定细菌菌株的正确需求量。

Michael Lappin 博士谈论了他在粪肠球菌 SF68 益生菌领域的工作。

这个链接指向一个英文视频,没有[中文]翻译。

SF68 是粪肠球菌的一种菌株,已证明其具有以下作用:

  • 有助于维持肠道菌群的平衡和健康
  • 增强免疫系统
  • 改善与微生物群失衡、应激、抗生素治疗或饮食改变相关的不良粪便质量
  • 改善幼犬和幼猫的粪便质量并减少粪便反复无常的情况
  • 改善犬的肠胃气胀。7–14

需记住的要点

  • 益生菌是活细菌,摄入后会对肠道功能产生有益影响。
  • 为使其有效,必须谨慎地选择合适的益生菌菌株和剂量,并进行安全性和稳定性测试。
  • 益生菌能够有助于维持肠道中有益菌和潜在致病菌之间的最佳平衡。
  • 粪肠球菌 SF68 是一种益生菌,除其他益处外,已有研究证明它还有助于维持肠道菌群的平衡和健康。

了解更多信息

1. Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLoS Biology, 14(8):e1002533. doi: 10.1371/journal.pbio.1002533

2. Sanders, M. E. (2008). Probiotics: Definition, sources, selection, and uses. Clinical Infectious Diseases, 46 (Suppl 2), S58–61. doi: 10.1086/52334.

3. Guard, B. C., Mila, H., Steiner, J. M., Mariani, C., Suchodolski, J. S., & Chastant-Maillard, S. (2017). Characterization of the fecal microbiome during neonatal and early pediatric development in puppies. PLoS ONE12(4), e0175718. http://doi.org/10.1371/journal.pone.0175718

4. Romano-Keeler, J., & Weitkamp, J. H. (2015). Maternal influences on fetal microbial colonization and immune development. Pediatric Research, 77(1-2), 189–95. doi: 10.1038/pr.2014.163

5. Young, W., Moon, C. D., Thomas, D. G., Cave, N. J., & Bermingham, E. N. (2016). Pre- and post-weaning diet alters the faecal metagenome in the cat with differences vitamin and carbohydrate metabolism gene abundances. Scientific Reports6, 34668. http://doi.org/10.1038/srep34668

6. World Health Organization (WHO) & Food and Agriculture Organization of the United States (FAO). (2006). Probiotics in food: Health and nutritional properties and guidelines for evaluation. (ISSN 0254-4725)

7. Benyacoub. J., Czarnecki-Maulden, G. L., Cavadini, C., Sauthier, T., Anderson, R. E., Schiffrin, E. J., & von der Weid, T. (2003). Supplementation of food with Enterococcus faecium (SF68) stimulates immune functions in young dogs. Journal of Nutrition, 133(4), 1158–1162.

8. Bybee, S. N., Scorza, A. V., & Lappin, M. R. (2011). Effect of the probiotic Enterococcus faecium SF68 on presence of diarrhea in cats and dogs housed in an animal shelter. Journal of Veterinary Internal Medicine, 25(4), 856–60. doi: 10.1111/j.1939-1676.2011.0738.x

9. Fenimore, A., Martin, L., & Lappin, M. R. (2017). Evaluation of metronidazole with and without Enterococcus faecium SF68 in shelter dogs with diarrhea. Topics in Companion Animal Medicine, 32(3), 100–103. doi: 10.1053/j.tcam.2017.11.001

10. Lappin, M. R., Veir, J. K., Satyaraj, E., & Czarnecki-Maulden, G. L. (2009). Pilot study to evaluate the effect of oral supplementation of Enterococcus faecium SF68 on cats with latent feline herpesvirus 1. Journal of Feline Medicine and Surgery, 11:650–654.

11. Simpson, K. W., Rishniw, M., Bellosa, M., Liotta, J., Lucio, A., Baumgart, M., & Bowman, D. (2009). Influence of Enterococcus faecium SF68 probiotic on giardiasis in dogs. Journal of Veterinary Internal Medicine, 23(3):476–481. doi: 10.1111/j.1939–1676.2009.0283.x

12. Torres-Henderson, C., Summers, S., Suchodolski, J., & Lappin, M. R. (2017). Effect of Enterococcus faecium strain SF68 on gastrointestinal signs and fecal microbiome in cats administered amoxicillin-clavulanate. Topics in Companion Animal Medicine, 32(3), 104–108. doi: 10.1053/j.tcam.2017.11.002

13. Veir, J. K., Knorr, R., Cavadini, C., Sherrill, S. J., Benyacoub, J., Satyaraj, E., & Lappin, M. R. (2007). Effect of supplementation with Enterococcus faecium (SF68) on immune functions in cats. Veterinary Therapeutics, 8(4), 229–238.

14. Waldron, M., Kerr, W., Czarnecki-Maulden, G. L., & Davis, J. (2012). Supplementation with Enterococcus faecium SF68 Reduces Flatulence in Dogs. Presented at the International Scientific Congress of the European Society of Veterinary and Comparative Nutrition, Bydgoszcz, Poland