Références

Transformer la santé cardiaque

  1. Abbott, J. A. (2005). Heart rate and heart rate variability of healthy cats in home and hospital environments. Journal of Feline Medicine and Surgery7(3), 195–202.
  2. Haskins, S., Pascoe, P.J., Ilkiw, J.E., Fudge, J., Hopper, K., & Aldrich, J. (2005). Reference cardiopulmonary values in normal dogs. Comparative Medicine, 55(2), 156–161.
  3. Fernández-Vizarra, E., Enríquez, J.A., Pérez-Martos, A., Montoya, J., & Fernández-Silva, P. (2011). Tissue-specific differences in mitochondrial activity and biogenesis. Mitochondrion, 11(1), 207–213.
  4. Veltri, K.L., Espiritu, M., & Singh, G. (1990). Distinct genomic copy number in mitochondria of different mammalian organs. Journal of Cell Physiology, 143(1), 160–164.
  5. Li, Q., Heaney, A., Langenfeld-McCoy, N., Boler, B. V., & Laflamme, D. P. (2019). Dietary intervention reduces left atrial enlargement in dogs with early preclinical myxomatous mitral valve disease: a blinded randomized controlled study in 36 dogs. BMC Veterinary Research15(1), 425.

Nutrition et santé cardiaque

  1. Doenst, T., Nguyen, T. D., & Abel, E. D. (2013). Cardiac metabolism in heart failure: implications beyond ATP production. Circulation Research113(6), 709–724.
  2. Lopaschuk, G.D., Ussher, J.R., Folmes, C.D., Jaswal, J.S., & Stanley, W.C. (2010). Myocardial fatty acid metabolism in health and disease. Physiological Reviews90(1), 207–258.
  3. Lopaschuk, G. (2017). Metabolic Modulators in Heart Disease: Past, Present, and Future. Canadian Journal of Cardiology, 33, 838–849.
  4. Labarthe, F., Gélinas, R., & Des Rosiers, C. (2008). Medium-chain fatty acids as metabolic therapy in cardiac disease. Cardiovascular Drugs and Therapy, 22(2), 97–106.
  5. Bach, A.C., & Babayan, V.K. (1982). Medium-chain triglycerides: an update. American Journal of Clinical Nutrition, 36(5), 950–962.
  6. Finck, B. N., Han, X., Courtois, M., Aimond, F., Nerbonne, J. M., Kovacs, A., Gross, R. W., & Kelly, D. P. (2003). A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proceedings of the National Academy of Sciences of the United States of America100(3), 1226–1231.
  7. Labarthe, F., Khairallah, M., Bouchard, B., Stanley, W.C., & Des Rosiers, C. (2005). Fatty acid oxidation and its impact on response of spontaneously hypertensive rat hearts to an adrenergic stress: benefits of a medium-chain fatty acidAmerican Journal of Physiology-Heart and Circulatory Physiology, 288(3), H1425–36.
  8. Saifudeen, I., Subhadra, L., Konnottil, R., & Nair, R. R. (2017). Metabolic Modulation by Medium-Chain Triglycerides Reduces Oxidative Stress and Ameliorates CD36-Mediated Cardiac Remodeling in Spontaneously Hypertensive Rat in the Initial and Established Stages of Hypertrophy. Journal of Cardiac Failure23(3), 240–251.
  9. Bauer, J.E. (2006). Metabolic basis for the essential nature of fatty acids and the unique dietary fatty acid requirements of cats. Journal of the American Veterinary Medical Association, 229(11), 1729–1732.
  10. Billman, G.E., Kang, J.X., & Leaf, A. (1999). Prevention of sudden cardiac death by dietary pure omega-3 polyunsaturated fatty acids in dogs. Circulation,99(18), 2452–2457.
  11. Freeman, L.M., Rush, J.E., Kehayias, J.J., Ross, J.N. Jr, Meydani, S.N., Brown, D.J., … Roubenoff, R. (1998). Nutritional alterations and the effect of fish oil supplementation in dogs with heart failure. Journal of Veterinary Internal Medicine, 12(6), 440–448.
  12. Freeman, L.M. (2010). Beneficial effects of omega-3 fatty acids in cardiovascular disease. Journal of Small Animal Practice, 51(9), 462–470.
  13. Laurent, G., Moe, G., Hu, X., Holub, B., Leong-Poi, H., Trogadis, J., Connelly, K., Courtman, D., Strauss, B. H., & Dorian, P. (2008). Long chain n-3 polyunsaturated fatty acids reduce atrial vulnerability in a novel canine pacing model. Cardiovascular Research77(1), 89–97.
  14. London, B., Albert, C., Anderson, M. E., Giles, W. R., Van Wagoner, D. R., Balk, E., … Lathrop, D. A. (2007). Omega-3 fatty acids and cardiac arrhythmias: prior studies and recommendations for future research: a report from the National Heart, Lung, and Blood Institute and Office Of Dietary Supplements Omega-3 Fatty Acids and their Role in Cardiac Arrhythmogenesis Workshop. Circulation116(10), e320–e335.
  15. Smith, C.E., Freeman, L.M., Rush, J.E., Cunningham, S.M., & Biourge, V. (2007). Omega-3 fatty acids in Boxer dogs with arrhythmogenic right ventricular cardiomyopathy. Journal of Veterinary Internal Medicine, 21(2), 265–273.
  16. Wall, R., Ross, R. P., Fitzgerald, G. F., & Stanton, C. (2010). Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutrition Reviews68(5), 280–289.
  17. Hansen, R. A., Ogilvie, G. K., Davenport, D. J., Gross, K. L., Walton, J. A., Richardson, K. L., Mallinckrodt, C. H., Hand, M. S., & Fettman, M. J. (1998). Duration of effects of dietary fish oil supplementation on serum eicosapentaenoic acid and docosahexaenoic acid concentrations in dogs. American Journal of Veterinary Research59(7), 864–868.
  18. Ineson, D. L., Freeman, L. M., & Rush, J. E. (2019). Clinical and laboratory findings and survival time associated with cardiac cachexia in dogs with congestive heart failure. Journal of Veterinary Internal Medicine33(5), 1902–1908.
  19. Freeman, L.M. (2012). Cachexia and sarcopenia: emerging syndromes of importance in dogs and cats. Journal of Veterinary Internal Medicine, 26(1), 3–17.
  20. Dupont, J., Dedeyne, L., Dalle, S., Koppo, K., & Gielen, E. (2019). The role of omega-3 in the prevention and treatment of sarcopenia. Aging Clinical and Experimental Research31(6), 825–836.
  21. Gorjao, R., Dos Santos, C., Serdan, T., Diniz, V., Alba-Loureiro, T. C., Cury-Boaventura, M. F., Hatanaka, E., Levada-Pires, A. C., Sato, F. T., Pithon-Curi, T. C., Fernandes, L. C., Curi, R., & Hirabara, S. M. (2019). New insights on the regulation of cancer cachexia by N-3 polyunsaturated fatty acids. Pharmacology & Therapeutics196, 117–134.
  22. Robinson, S. M., Reginster, J. Y., Rizzoli, R., Shaw, S. C., Kanis, J. A., Bautmans, I., … Cooper, C., & ESCEO working group (2018). Does nutrition play a role in the prevention and management of sarcopenia? Clinical Nutrition (Edinburgh, Scotland)37(4), 1121–1132.
  23. Sanderson S. L. (2006). Taurine and carnitine in canine cardiomyopathy. The Veterinary Clinics of North America. Small Animal Practice36(6), 1325–viii.
  24. Schaffer, S., Solodushko, V., & Azuma, J. (2000). Taurine-deficient cardiomyopathy: role of phospholipids, calcium and osmotic stress. Advances in Experimental Medicine and Biology, 483, 57–69.
  25. Schaffer, S. W., Jong, C. J., Ramila, K. C., & Azuma, J. (2010). Physiological roles of taurine in heart and muscle. Journal of biomedical science17, Suppl 1(Suppl 1), S2.
  26. Pion, P.D., Kittleson, M.D., Rogers, Q.R., & Morris, J.G. (1987). Myocardial Failure in Cats Associated with Low Plasma Taurine: A Reversible Cardiomyopathy. Science, 237, 764–768.
  27. Wang, Z., Liu, Y., Liu, G., Lu, H., Mao, C. (2018). L-Carnitine and heart disease. Life Sciences, 184, 88-97.
  28. Birringer, M., & Lorkowski, S. (2019). Vitamin E: regulatory role of metabolites. International Union of Biochemistry and Molecular Biology, Life, 71(4), 479–486.
  29. Michałek, M., Tabiś, A., Cepiel, A., & Noszczyk-Nowak, A. (2020). Antioxidative enzyme activity and total antioxidant capacity in serum of dogs with degenerative mitral valve disease. Canadian Journal of Veterinary Research, 84(1), 67–73.
  30. Pryor, W. A. (2000). Vitamin E and heart disease: basic science to clinical intervention trials. Free radical biology & medicine28(1), 141–164.
  31. Sagols, E., & Priymenko, N. (2011). Oxidative stress in dog with heart failure: the role of dietary fatty acids and antioxidants. Veterinary Medicine International2011, 180–206.
  32. Sozen, E., Demirel, T., & Ozer, N.K. (2019). Vitamin E: regulatory role in the cardiovascular system. International Union of Biochemistry and Molecular Biology Life, 71(4), 507–515.
  33. Del Gobbo, L.C., Imamura, F., Wu, J.H., de Oliveira Otto, M.C., Chiuve, S.E., & Mozaffarian, D. (2013). Circulating and dietary magnesium and risk of cardiovascular disease: a systematic review and meta-analysis of prospective studies. American Journal of Clinical Nutrition98(1), 160–173.
  34. Freeman, L.M., Rush, J.E., & Markwell, P.J. (2006). Effects of dietary modification in dogs with early chronic valvular disease. Journal of Veterinary Internal Medicine, 20, 1116–1126.
  35. Qu, X., Jin, F., Hao, Y., Li, H., Tang, T., Wang, H., Yan, W., & Dai, K. (2013). Magnesium and the risk of cardiovascular events: a meta-analysis of prospective cohort studies. PloS one8(3), e57720.
  36. Tardy, A.L., Pouteau, E., Marquez, D., Yilmaz, C., & Scholey, A. (2020). Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients, 12(1). pii: E228.
  37. Brack, A. S., Conboy, M. J., Roy, S., Lee, M., Kuo, C. J., Keller, C., & Rando, T. A. (2007). Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science (New York, N.Y.)317(5839), 807–810.
  38. Liu, H., Fergusson, M. M., Castilho, R. M., Liu, J., Cao, L., Chen, J., … Finkel, T. (2007). Augmented Wnt signaling in a mammalian model of accelerated aging. Science (New York, N.Y.)317(5839), 803–806.
  39. Marchand, A., Atassi, F., Gaaya, A., Leprince, P., Le Feuvre, C., Soubrier, F., Lompré, A. M., & Nadaud, S. (2011). The Wnt/beta-catenin pathway is activated during advanced arterial aging in humans. Aging Cell10(2), 220–232.
  40. Li, Q., & Hannah, S. S. (2012). Wnt/β-catenin signaling is downregulated but restored by nutrition interventions in the aged heart in mice. Archives of Gerontology and Geriatrics55(3), 749–754.
  41. Barger, J. L., Kayo, T., Vann, J. M., Arias, E. B., Wang, J., Hacker, T. A., Wang, Y., Raederstorff, D., … Prolla, T. A. (2008). A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PloS one3(6), e2264.

Affections cardiaques - Introduction

  1. Keene, B. W., Atkins, C. E., Bonagura, J. D., Fox, P. R., Häggström, J., Fuentes, V. L., Oyama, M. A., Rush, J. E., Stepien, R., & Uechi, M. (2019). ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dogs. Journal of Veterinary Internal Medicine33(3), 1127–1140.
  2. Buchanan, J.W. Prevalence of cardiovascular disorders. In: Fox P.R, Sisson D.D, Moise N.S, editors. Textbook of Canine and Feline Cardiology: Principles and Clinical Practice. 2nd ed. Philadelphia, PA: WB Saunders; 1999. pp. 457–470.
  3. Payne, J. R., Brodbelt, D. C., & Luis Fuentes, V. (2015). Cardiomyopathy prevalence in 780 apparently healthy cats in rehoming centres (the CatScan study). Journal of Veterinary Cardiology: the official journal of the European Society of Veterinary Cardiology17 Suppl 1, S244–S257.
  4. Fox, P. R., Keene, B. W., Lamb, K., Schober, K. A., Chetboul, V., Luis Fuentes, V., … Tachika Ohara, V. Y. (2018). International collaborative study to assess cardiovascular risk and evaluate long-term health in cats with preclinical hypertrophic cardiomyopathy and apparently healthy cats: The REVEAL Study. Journal of Veterinary Internal Medicine32(3), 930–943.
  5. Côté, E., Edwards, N.J., Ettinger, S.J., Fuentes, V.L., MacDonald, K.A., Scansen, B.A., Sisson, D.D., & Abbott, J.A. (2015). Management of incidentally detected heart murmurs in dogs and cats. Journal of Veterinary Cardiology, 17(4), 245–261.
  6. Loughran, K. A., Rush, J. E., Rozanski, E. A., Oyama, M. A., Larouche-Lebel, É., & Kraus, M. S. (2019). The use of focused cardiac ultrasound to screen for occult heart disease in asymptomatic cats. Journal of Veterinary Internal Medicine33(5), 1892–1901.
  7. Luis Fuentes, V., Abbott, J., Chetboul, V., Côté, E., Fox, P. R., Häggström, J., Kittleson, M. D., Schober, K., & Stern, J. A. (2020). ACVIM consensus statement guidelines for the classification, diagnosis, and management of cardiomyopathies in cats. Journal of Veterinary Internal Medicine, 34(3), 1062–1077.
  8. Borgarelli, M., & Buchanan, J.W. (2012). Historical review, epidemiology and natural history of degenerative mitral valve disease. Journal of Veterinary Cardiology, 14(1), 93–101.
  9. Rush, J. E., Freeman, L. M., Fenollosa, N. K., & Brown, D. J. (2002). Population and survival characteristics of cats with hypertrophic cardiomyopathy: 260 cases (1990–1999). Journal of the American Veterinary Medical Association220(2), 202–207.
  10. MacDonald, K. Feline cardiomyopathy. In: Smith, F.W.K., Tilley, L.P., Oyama, M.A., & Sleeper, M.M, editors. Manual of Canine and Feline Cardiology. 5th ed. Saint Louis, MO: Elsevier; 2016. pp. 153.
  11. Schrope, D. P. (2015). Prevalence of congenital heart disease in 76,301 mixed-breed dogs and 57,025 mixed-breed cats. Journal of Veterinary Cardiology: the official journal of the European Society of Veterinary Cardiology17(3), 192–202.
  12. Gil-Ortuño, C., Sebastián-Marcos, P., Sabater-Molina, M., Nicolas-Rocamora, E., Gimeno-Blanes, J. R., & Fernández Del Palacio, M. J. (2020). Genetics of feline hypertrophic cardiomyopathy. Clinical Genetics, 10.1111/cge.13743.
  13. Freeman, L. M. & Rush, J. Nutrition in Cardiovascular Disorders. In: Smith, F.W.K., Tilley, L.P., Oyama, M.A., & Sleeper, M.M, editors. Manual of Canine and Feline Cardiology. 5th ed. Saint Louis, MO.: Elsevier; 2016. Pp. 394–403.
  14. Ettinger, S. J., Benitz, A. M., Ericsson, G. F., Cifelli, S., Jernigan, A. D., Longhofer, S. L., Trimboli, W., & Hanson, P. D. (1998). Effects of enalapril maleate on survival of dogs with naturally acquired heart failure. The Long-Term Investigation of Veterinary Enalapril (LIVE) Study Group. Journal of the American Veterinary Medical Association213(11), 1573–1577.
  15. Häggström, J., Boswood, A., O'Grady, M., Jöns, O., Smith, S., Swift, S., … DiFruscia, R. (2008). Effect of pimobendan or benazepril hydrochloride on survival times in dogs with congestive heart failure caused by naturally occurring myxomatous mitral valve disease: the QUEST study. Journal of Veterinary Internal Medicine22(5), 1124–1135.
  16. Mattin, M. J., Boswood, A., Church, D. B., McGreevy, P. D., O'Neill, D. G., Thomson, P. C., & Brodbelt, D. C. (2015). Degenerative mitral valve disease: Survival of dogs attending primary-care practice in England. Preventive Veterinary Medicine122(4), 436–442.
  17. Li, Q., Freeman, L. M., Rush, J. E., & Laflamme, D. P. (2015). Expression Profiling of Circulating MicroRNAs in Canine Myxomatous Mitral Valve Disease. International Journal of Molecular Sciences16(6), 14098–14108.

Affections cardiaques - Insuffisance cardiaque

  1. Keene, B. W., Atkins, C. E., Bonagura, J. D., Fox, P. R., Häggström, J., Fuentes, V. L., Oyama, M. A., Rush, J. E., Stepien, R., & Uechi, M. (2019). ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dogs. Journal of Veterinary Internal Medicine33(3), 1127–1140.
  2. Neubauer, S. (2007). The failing heart – an engine out of fuel. The New England Journal of Medicine356(11), 1140–1151.
  3. Lopaschuk, G. (2017). Metabolic Modulators in Heart Disease: Past, Present, and Future. Canadian Journal of Cardiology, 33, 838–849.
  4. Sabbah, H. N. (2020). Targeting the Mitochondria in Heart Failure: A Translational Perspective. JACC. Basic to Translational Science5(1), 88–106.
  5. Taegtmeyer, H. (2004). Cardiac metabolism as a target for the treatment of heart failure. Circulation,110(8), 894–896.
  6. Doenst, T., Nguyen, T. D., & Abel, E. D. (2013). Cardiac metabolism in heart failure: implications beyond ATP production. Circulation Research113(6), 709–724.
  7. Karwi, Q. G., Uddin, G. M., Ho, K. L., & Lopaschuk, G. D. (2018). Loss of Metabolic Flexibility in the Failing Heart. Frontiers in Cardiovascular Medicine5, 68.
  8. Li, Q., Freeman, L. M., Rush, J. E., Huggins, G. S., Kennedy, A.D., Labuda, J.A., Laflamme, D.P., & Hannah, S.S. (2015). Veterinary Medicine and Multi-Omics Research for Future Nutrition Targets: Metabolomics and Transcriptomics of the Common Degenerative Mitral Valve Disease in Dogs. OMICS, 19(8), 461–470.
  9. Jiang, L., Wang, J., Li, R., Fang, Z.M., Zhu, X.H., Yi, X., ... Jiang, D.S. (2019). Disturbed energy and amino acid metabolism with their diagnostic potential in mitral valve disease revealed by untargeted plasma metabolic profiling. Metabolomics, 15(4), 57.
  10. Lanfear, D. E., Gibbs, J. J., Li, J., She, R., Petucci, C., Culver, J. A., … Gardell, S. J. (2017). Targeted Metabolomic Profiling of Plasma and Survival in Heart Failure Patients. Journal of the American College of Cardiology,Heart failure5(11), 823–832.
  11. Oyama, M. A., & Chittur, S. V. (2006). Genomic expression patterns of mitral valve tissues from dogs with degenerative mitral valve disease. American Journal of Veterinary Research67(8), 1307–1318.
  12. Brown, D. A., Perry, J. B., Allen, M. E., Sabbah, H. N., Stauffer, B. L., Shaikh, S. R., … Gheorghiade, M. (2017). Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nature reviews. Cardiology14(4), 238–250.

Affections cardiaques - Maladie Myxomateuse de la Valve Mitrale

  1. Buchanan, J.W. (1977). Chronic valvular disease (endocardiosis) in dogs. Advances in Veterinary Science, 21, 57–106.  
  2. Detweiler, D. K., & Patterson, D. F. (1965). The prevalence and types of cardiovascular disease in dogs. Annals of the New York Academy of Sciences127(1), 481–516.
  3. Haggstrom, J., Kvart, C., & Pedersen, H.D. (2005). Acquired valvular disease. In: Ettinger, S.J., Feldman, E.C., eds. Textbook of Veterinary Internal Medicine, 6th ed. St Louis: Elsevier: 1022–1039.
  4. Keene, B. W., Atkins, C. E., Bonagura, J. D., Fox, P. R., Häggström, J., Fuentes, V. L., Oyama, M. A., Rush, J. E., Stepien, R., & Uechi, M. (2019). ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dogs. Journal of Veterinary Internal Medicine33(3), 1127–1140.
  5. Atkins, C., Bonagura, J., Ettinger, S., Fox, P., Gordon, S., Haggstrom, J., … Stepien R. (2009). Guidelines for the diagnosis and treatment of canine chronic valvular heart disease. Journal of Veterinary Internal Medicine23, 1142–1150.
  6. Borgarelli, M., & Buchanan, J.W. (2012). Historical review, epidemiology and natural history of degenerative mitral valve disease. Journal of Veterinary Cardiology, 14(1), 93–101.
  7. Brown, D. A., Perry, J. B., Allen, M. E., Sabbah, H. N., Stauffer, B. L., Shaikh, S. R., … Gheorghiade, M. (2017). Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nature reviews. Cardiology14(4), 238–250.
  8. Lopaschuk, G. (2017). Metabolic Modulators in Heart Disease: Past, Present, and Future. Canadian Journal of Cardiology, 33, 838–849.
  9. Sabbah, H. N. (2020). Targeting the Mitochondria in Heart Failure: A Translational Perspective. JACC. Basic to Translational Science5(1), 88–106.
  10. Li, Q., Freeman, L.M., Rush, J.E., Huggins, G.S., Kennedy, A.D., Labuda, J.A., Laflamme, D.P., & Hannah, S.S. (2015). Veterinary Medicine and Multi-Omics Research for Future Nutrition Targets: Metabolomics and Transcriptomics of the Common Degenerative Mitral Valve Disease in Dogs. OMICS, 19(8), 461–470.
  11. Li, Q., Heaney, A., Langenfeld-McCoy, N., Boler, B. V., & Laflamme, D. P. (2019). Dietary intervention reduces left atrial enlargement in dogs with early preclinical myxomatous mitral valve disease: a blinded randomized controlled study in 36 dogs. BMC Veterinary Research15(1), 425.
  12. Dickson, D., Caivano, D., Matos, J.N., Summerfield, N., & Rishniw, M. (2017). Two dimensional echocardiographic estimates of left atrial function in healthy dogs and dogs with myxomatous mitral valve disease. Journal of Veterinary Cardiology, 19, 469–479.
  13. Li, Q., Laflamme, D.P., & Bauer, J. E. (2020). Serum untargeted metabolomic changes in response to dietary intervention on dogs with preclinical myxomatous mitral valve disease. PLoS One, 15(6), 0234404.

Sciences émergentes - Axe cœur-intestin

  1. Jin, M., Qian, Z., Yin, J., Xu, W., & Zhou, X. (2019). The role of intestinal microbiota in cardiovascular disease. Journal of Cellular and Molecular Medicine23(4), 2343–2350.
  2. Kamo, T., Akazawa, H., Suzuki, J. I., & Komuro, I. (2017). Novel Concept of a Heart-Gut Axis in the Pathophysiology of Heart Failure. Korean Circulation Journal47(5), 663–669.
  3. Tang, W., Li, D. Y., & Hazen, S. L. (2019). Dietary metabolism, the gut microbiome, and heart failure. Nature reviews. Cardiology16(3), 137–154.
  4. Wang, Z., Liu, Y., Liu, G., Lu, H., Mao, C. (2018). L-Carnitine and heart disease. Life Sciences, 184, 88–97.
  5. Zhao, Y., & Wang, Z. (2020). Gut microbiome and cardiovascular disease. Current Opinion in Cardiology35(3), 207–218.
  6. Luedde, M., Winkler, T., Heinsen, F. A., Rühlemann, M. C., Spehlmann, M. E., Bajrovic, A., Lieb, W., Franke, A., Ott, S. J., & Frey, N. (2017). Heart failure is associated with depletion of core intestinal microbiota. ESC heart failure, 4(3), 282–290.
  7. Coelho, L. P., Kultima, J. R., Costea, P. I., Fournier, C., Pan, Y., Czarnecki-Maulden, G., Hayward, M. R., Forslund, S. K., Schmidt, T., Descombes, P., Jackson, J. R., Li, Q., & Bork, P. (2018). Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome, 6(1), 72.

Sciences émergentes - Omique

  1. Civelek, M., & Lusis, A. J. (2014). Systems genetics approaches to understand complex traits. Nature reviews. Genetics15(1), 34–48.
  2. Hasin, Y., Seldin, M., & Lusis, A. (2017). Multi-omics approaches to disease. Genome biology18(1), 83.
  3. Kato, H., Takahashi, S., & Saito, K. (2011). Omics and integrated omics for the promotion of food and nutrition science. Journal of Traditional and Complementary Medicine1(1), 25–30.
  4. Li, Q., Freeman, L.M., Rush, J.E., Huggins, G.S., Kennedy, A.D., Labuda, J.A., Laflamme, D.P., & Hannah, S.S. (2015). Veterinary Medicine and Multi-Omics Research for Future Nutrition Targets: Metabolomics and Transcriptomics of the Common Degenerative Mitral Valve Disease in Dogs. OMICS, 19(8), 461–470.